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ABSTRACT 
A linear stability analysis has been employed to investigate the thermocapillary instability occurring in a 
nonisothermal liquid bridge. The steady, axisymmetric basic state was solved numerically using a finite 
difference method. A mixed finite difference-spectral method, combining the advantages of both methods, 
was then used to reduce the linear disturbance equations to an eigenvalue problem. The critical Marangoni 
numbers for axisymmetric disturbances are predicted for small Prandtl numbers and various aspect ratios. 
The effect of surface heat transfer is also investigated. The present results are compared with energy-theory 
results and with the results of other experiments. 
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In order to avoid container contamination, the float-zone method has been widely used in the 
growth of high-purity crystals. Using this technique, many materials with high surface tensions 
have been successfully melted and recrystallized into single crystals. The size of the melt is 
restricted by capillary instability that originates at the meniscus, and the convection transports 
present in the melt during the growth strongly influence the structure and quality of individual 
crystals. 

Two types of natural convection may occur in the melt due to the nonuniform temperature 
distribution: buoyancy-driven flow induced by the density gradient inside the melt, and 
thermocapillary flows caused by the surface-tension gradient at the gas-liquid interface. The 
influence of thermocapillary convection is dominant for microgravity environments or small-scale 
systems. The existence of thermocapillary convection in the melt of the float-zone process has 
been verified experimentally by Schwabe et al.1. Periodic striations in single molybdenum (Mo) 
crystals induced by the oscillatory thermocapillary flow have been reported by Jurisch and Loser2. 

In order to understand the transport phenomena, the float zone is simulated by vertical liquid 
bridges held between two concentric, cylindrical solid rods. The steady, axisymmetric 
thermocapillary flow in liquid bridges has been studied theoretically by several authors. Xu and 
Davis3 and Kuhlmann4 had treated this problem analytically. Numerical studies have been 
undertaken by Chang and Wilcox5, Fu and Ostrach6, and Chen et al.7. Experiments on 
thermocapillary convection in liquid bridges performed by Chun8, Preisser et al.9, Kamotani et 
al.10 and Velten et al.11 have shown that a steady axisymmetric flow may change into an 
oscillatory flow when the Marangoni number exceeds a critical value. Both axisymmetric and 
non-axisymmetric modes were observed, depending on the aspect ratio of the liquid bridge and 
the properties of the fluid. However, numerical solutions for a steady axisymmetric 
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thermocapillary flow can be obtained far beyond the critical Marangoni numbers obtained in 
experiments. Xu and Davis12 used linear stability theory to study the stability of thermocapillary 
convection in a slender bridge (a zero aspect ratio). Their study did not include the effect created 
by the existence of the endwall boundary layer, and their results showed that the oscillatory 
flow may be induced by the thermocapillary force. But the critical Marangoni number they 
calculated is far below those obtained in experiments. Rupp, Müller and Neumann13 have 
determined the critical Marangoni values using time-dependent, three-dimensional numerical 
modelling. 

Since the basic-state velocity and temperature fields are two dimensional, the stability of 
thermocapillary convection in liquid bridges of finite aspect ratio is governed by 
partial-differential equations. Therefore, the stability analyses require a complex procedure to 
reduce the partial-differential equations to an eigenvalue system. Neitzel and his co-workers14-16 

employed both an energy stability analysis and a linear stability analysis to investigate this 
problem of O(l) aspect ratio. Their results showed that the critical Marangoni numbers predicted 
by the non-axisymmetric modes are much smaller than those obtained by the axisymmetric 
mode. In their approach, huge matrix systems are formed since the finite difference method with 
a staggered-grid discretization scheme is used to reduce the partial-differential disturbance 
equations to an eigenvalue system. Therefore, their solution procedure requires large computer 
memory and computation time. 

The advantage of using a spectral scheme is that relatively few degrees of freedom are needed 
to approximate a given function, which reduces both computer storage requirements and 
computation time. In addition, the finite difference methods are easier to formulate for most 
kinds of boundary conditions. A mixed finite difference-spectral method combining the 
advantages of both methods has been used successfully to study the buoyancy convection in 
the finite box17. 

In the present study, linear stability analysis is carried out to study the instability of 
thermocapillary convection in liquid bridges of finite aspect ratio. The gas-liquid interface is 
assumed to have no surface deformation due to the presence of a large mean surface tension. 
The steady, axisymmetric basic state is determined numerically using a finite difference method 
applied to a streamfunction-vorticity-temperature formation. The disturbances are assumed to 
be infinitesimal and axisymmetric. A mixed finite difference-spectral method is employed to reduce 
the linear disturbance equations to an eigenvalue problem. The finite difference method is 
employed in the radial direction, and the spectral-Galerkin method is employed in the axial 
direction. The critical Marangoni numbers are determined for different aspect ratios, and the 
influence of the fluid properties and heating conditions on the stability properties are taken into 
consideration. The present results are compared with critical Marangoni numbers from recent 
laboratory experiments and also with the previous energy-stability results. 

BASIC STATE 

The problem examined in this study is essentially that treated by Chen et a l . 7 Consider an 
axisymmetric liquid bridge held between two coaxial rods of radius R separated by a distance 
L. The bridge contains an incompressible, Newtonian liquid. The thermocapillary flow in the 
bridge is driven by a temperature difference ∆T imposed across the rigid walls (at z = 0 and 
z = L), with the upper rod being at a higher temperature than the lower. The z direction has 
been selected as opposite the direction of gravity. The gas-liquid interface is bounded by an 
inviscid gas of negligible density and viscosity with temperature distribution f(z), and it is 
assumed to have a large mean surface tension resulting in no surface deformation. The Boussinesq 
approximation is assumed to be valid and the surface tension is considered as a linear decreasing 
function of temperature. 

The length, time, velocity, and pressure have been scaled by R0, R0μ/(γs∆T), γs∆T/μ, and 
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∆T/R0,respectively, where γs is the rate of decrease of surface tension with temperature and μ 
is the dynamic viscosity. The dimensionless temperature is defined by (temperature — Tm)/∆T, 
where Tm is the average temperature of the two rigid walls. We seek a steady, axisymmetric 
thermocapillary flow solution of the form (u, v, w, p,T) = (U(r, z), 0, W(r, z), P(r, z), Θ(r, z)) 
where (u, v, w) are velocities corresponding to the usual cylindrical coordinates (r, 0, z), p is the 
pressure, and T is the temperature. By eliminating the pressure, the dimensionless governing 
equations can be expressed in the following form: 

where the stream function ψ and vorticity ω are defined as: 

The boundary conditions are: 

The dimensionless parameters appearing in governing equations and boundary conditions are: 

Re = γs∆TR0/(μv) (Reynolds number) 
Ma = Re Pr = ys∆TR0 /(μα) (Marangoni number), 

Gr = gβ∆TR∆3
0/v2 (Grashof number) 

Bi = hgL/k (Biot number) 
A = R/L (aspect ratio) 

where v is the kinematic viscosity, a is the thermal diffusivity, β is the thermal expansion 
coefficient, hg is the surface heat transfer coefficient, k is the thermal conductivity, and Pr is the 
Prandtl number. The ambient temperature distributions are assumed to be: 

(I) f(z) = - 0 . 5 
and 

(II) f(z) = Az- 0.5 
respectively. Case (I), employed by Neitzel and his co-workers14-16, represents that the 
surroundings are at constant temperature equal to that of the cold rod, case (II), used by Xu 
and Davis3, shows that the surrounding temperature varies linearly from the cold wall to the 
hot wall. 

We solved (1) with conditions (3)-(6) by applying a central-difference method with 
second-order accuracy. The solution procedure is a modified version of that employed by and 
Chen et al.18 and Chen et a l . 7 The details of the numerical method appear in the solutions and 
will not be repeated here. 

LINEAR STABILITY ANALYSIS 

The equations governing infinitesimal, axisymmetric disturbances of the flow are obtained by 
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substituting: 

(7) 
into the unsteady governing equations, eliminating the portion resulting solely from the basic 
state and neglecting second- and higher-order terms. We make the usual assumption that the 
disturbance may be decomposed into normal modes as: 

(8) 
The complex eigenvalue: 

σ = γ + iω 
contains the growth rate γ and the angular frequency ω. The real part of σ determines the 
stability (γ < 0) or instability (γ > 0) of the basic state. The condition γ = 0 corresponds to 
marginal stability. 

Substituting (8) into the linearized governing equations and dropping the overtildes of 
we obtained the following set of partial differential equations: 

Eliminating the disturbance pressure yields: 

with the boundary conditions 

The disturbance stream function ψ is defined as 
u = r-1ψx, w= —r-1ψr 

Equations (10) and boundary conditions (11)-(13) form a linear partial differential eigenvalue 
problem which will have a non-trivial solution, but for only certain parameter values. 
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NUMERICAL PROCEDURE 

The mixed finite difference-spectral method, which has been used successfully to compute the 
linear Marangoni instability of fluids in circular cylindrical containers19, has been modified to 
solve the linear partial differential eigenvalue system (10)—(13). In the present problem, the 
complexity of the boundary conditions at r= 1 prohibits the use of a Galerkin expansion in the r 
direction. To avoid this difficulty, finite-differencing is used in the r direction and a 
spectral-Galerkin procedure is employed in the z direction. 

The disturbance stream function and the disturbance temperature are expressed in the form: 

where N is the total number of the trial-function terms. The trial functions Aj and Bj were chosen 
as the following forms: 

(15a) 

(15b) 
where λj is the root of 

tanh λ/2 + tan ;./2 = 0 (16) 

Aj are the beam functions developed by Harris and Reid20. The series (14) is substituted into 
the linear disturbance equations (10), which are then multiplied by Ak(z) and Bk(z)(k = 1 , . . . , N), 
respectively, and integrated over the region of 0 < z < 1/A to obtain a set of 2N linear ordinary 
differential equations for the functions ψj(r) and Tj(r). We define: 

Then we obtain: 

where Dr = d/dr, D2 = d2/dr2 , . . . etc. The corresponding boundary conditions become: 
S = DrS = DrT = 0 at r = 0 (19a-c) 
S = 0, D2S - DrS + MbT = 0, DrT + BiT = 0 at r = 1 (19d-f) 

The Mij and Nij in Equation (18)—(19) are N x N matrices and list in the appendix. 
The second-order central differencing is used to solve the linear ordinary differential system 

(18) together with boundary conditions (19). Let the region 0 < r < 1 be divided into M — 1 
equal intervals, with i = 1 and i = M at the boundary points. The difference equations are: 
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with the boundary conditions: 

where ∆r = 1/(M — 1). The definitions of the matrices are described in Appendix B. 
This yields to a generalized real eigensystem of the form: 

KX = σMX (22) 
In these equations, X is the transpose of the vector consisting of all unknowns on all grid points, 
M is a symmetric positive definite matrix, and K has a banded structure and depends on the 
basic state. The elements of K involving the single integrals are evaluated by Simpson's rule. 
The matrix eigenvalue problem (22) was solved using the IMSL subroutine DG2LRG which is 
developed according to a QZ algorithm. 

If all eigenvalues have negative real parts, the basic state is stable. If the greatest real part of 
all eigenvalues is positive, the basic state is unstable. Figure 1 shows the variation of the eigenvalue 
which has the greatest real part of all eigenvalues with Ma for fixed Pr, Bi, Gr, and A. The 
critical Marangoni number Mac is determined as the greatest real part of all eigenvalues is zero. 

The value of the critical Marangoni number is strongly affected by the accuracy of the solution 
of the basic state. Therefore, a fine grid distribution is needed in the z direction since the 
boundary-layer thickness near the sidewalls decreases as Ma increases. Checks were carried out 
to determine the influence of the number of terms in Galerkin representation on the accuracy 
of the results. Checks were also carried out on various points in the finite-difference grid to 
determine how they influenced the accuracy of the results. The results for Pr = 1, Bi = 0.3, 
Gr = 0, Ma = 2000, and A = 1 are shown in Figures 2 and 3. In Figure 2, M and Nz represent 
the number of grid points in the r and z directions, respectively. In Figure 2, we see that the 
growth rate γ approaches a certain value when the number of grid points increases in both r 
and z directions. Basically, the finer grids will have more accurate results, but it requires more 
computation time. Obviously, the growth rate γ for the fixed numbers of the finite-difference 
grid points M asymptotically approaches a constant value as the number of trial-function terms 
N increases. In Figure 3, with the same number of trial function terms, the required CPU time 
for M = 61 is three times as large as it is for M = 51. The requirement of the computer memory 
increases significantly as M and N increase. For the results discussed below, the terms in the 
Galerkin expansion are fixed at 8 and the points in the finite-difference grids vary with the aspect 
ratio, which is the same as the grid points selected for the basic state in the z direction. The 
grid distributions for different aspect ratios used in the present study are listed in Table 1. 

RESULTS AND DISCUSSION 

The computations described in the previous section have been done in double-precision arithmetic 
on the National Central University VAX 8650 and HP 730 computers. The order of the Prandtl 
numbers associated with electronic materials grown by the float-zone method is less than 10 - 1 , 
such as Si (Pr = 0.02) and Ga As (Pr = 0.068). Therefore, calculations were performed for Pr < 1 
with a wide range of aspect ratios. 

In Figure 4, the critical Marangoni number Mac is plotted as a function of aspect ratio A for 
Pr = 0.1, Bi = 0.3, Gr = 0, and case (1). The results are compared with the energy-theory results 
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of Shen et al.14. The critical Marangoni number Mac is strongly dependent on the aspect ratio 
A and increases as A increases. This is due to the stabilizing effect generated by the existence 
of the endwalls. Due to the shape instability of the liquid bridge, the bridge will break down 
before its length reaches the Rayleigh limit (2πR)7. From Figure 4, it is clear that the present 
results are in qualitative agreement with the energy-theory results. As expected, the critical 
Marangoni number calculated by the linear theory is higher than that predicted by the energy 
theory, since the linear-theory results provide sufficient conditions for instability, while the 
energy-theory results give sufficient conditions for stability. 

Recently, Velten et al.11 conjectured that the thermocapillary convection in cylindrical liquid 
bridges may be destabilized by reducing the radial heat loss along the free surface. To verify 
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this opinion, we have investigated the influence of the Biot number and the form of the ambient 
temperature distribution on the critical Marangoni number. Figure 5 shows the critical Marangoni 
number Mac versus A for Pr = 0.1, Gr = 0 and case (I) with four different Biot numbers. Because 
the disturbances decay faster due to better heat transfer along the free surface, the critical 
Marangoni number increases with increasing Bi. The influence of the Biot number on the critical 
Marangoni number is enhanced by the decreasing aspect ratio. This is due to the higher heat 
transfer rate for lower aspect ratio since the heat transfer area for lower aspect ratios is larger 
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Table I Grid distribution for different aspect 
ratios using in the basic-state computations 

A 

0.5 
0.7 
0.8 
1.0 
1.2 
1.4 
1.5 

M 

51 
51 
51 
61 
61 
71 
71 

NZ 

101 
101 
101 
101 
91 
91 
91 
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than for higher aspect ratios. Figure 6 illustrates that the critical Marangoni number is affected 
by the form of the ambient temperature distribution. The critical Marangoni numbers for case 
(I) are higher than those of case (II). This is expected because the heat transfer along the free 
surface for case (I) is better than that for case (II) when all the parameters are fixed. 

The oscillation period at the marginal state is defined as ΤC = 1/(Ma A2). The influence of the 
aspect ratio on the period of oscillation is shown in Figure 7. From Figure 7, it is clear that the 
oscillatory period increases as the aspect ratio decreases. The magnitude of the oscillatory period 
is dependent on the flow speed on the free surface and the aspect ratio. The time required for 
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one revolution in a thermocapillary convection cell decreases as the surface speed and aspect 
ratio increase. Hence, both effects reduce the magnitude of the oscillation period. The flow speed 
on the free surface increases as the Marangoni number increases. Therefore, the results in Figure 
7 can be expected, since the critical Marangoni number increases with increasing A. The 
experimental results of Velten et al.11 also show similar trends. 

The effect of the Prandtl number on the critical Marangoni number Mac is of interest. Figure 
8 is a plot of Mac versus Pr for Bi = 0, Gr = 0, A = 0.8, and case (I). The triangles represent 
the numerical results predicted by Rupp, Müller and Neumann13, while the solid circle and the 
solid square refer to the experimental results obtained by growing Mo crystals2 and Si crystals13, 
respectively. The present results are consistent with those of numerical calculations13 and 
experimental observations2'13 in that the critical Marangoni number increases as the Prandtl 
number increases. The critical Marangoni numbers predicted by the present method are higher 
than those from experiment observations and obtained in numerical simulations. 

CONCLUSIONS 

Linear-stability analysis has been used to study the instability of thermocapillary convection in 
a nonisothermal liquid bridge for axisymmetric disturbances. A mixed finite difference-spectral 
method has been developed to solve the linear disturbance equations. The present results are 
in qualitative agreement with those of energy-stability analysis, those of numerical computations, 
and of experimental observations. Based on the present results, enhancing radial heat transfer 
at the free surface, which can be reached by increasing Bi or changing the ambient temperature 
distribution, increases stability. This result confirms the conjecture of Velten et al.11 To obtain 
results that are in better agreement with the experiment observations, the present method shall 
be able to take into account the effect of nonaxisymmetric disturbances and further investigates 
the influence of thermal conditions in the surrounding environment, e.g. thermal radiation and 
ambient temperature distribution. When the non-axisymmetric disturbances are considered, the 
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disturbance equations become three-dimensional. The mixed finite difference-spectral procedure 
will yield a complex eigenvalue system which is much bigger than the present two-dimensional 
case. Therefore, the large computer memory and computation time are required by the 
three-dimensional case. The development of the three-dimensional one is currently under way. 
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